Copied to
clipboard

G = C12.8C42order 192 = 26·3

1st non-split extension by C12 of C42 acting via C42/C2xC4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.8C42, C42:8Dic3, C6.7C4wrC2, (C4xC12):12C4, C4:Dic3:5C4, C4.Dic3:1C4, (C2xC42).8S3, C12.27(C4:C4), (C2xC12).58Q8, C4.8(C4xDic3), C4.44(D6:C4), C3:1(C42:6C4), (C2xC12).478D4, (C2xC4).162D12, (C2xC4).42Dic6, C4.20(C4:Dic3), (C22xC4).428D6, (C22xC6).176D4, C2.3(C42:4S3), C12.59(C22:C4), C4.22(Dic3:C4), C22.36(D6:C4), C23.79(C3:D4), C6.1(C2.C42), C2.3(C6.C42), C23.26D6.1C2, C22.12(Dic3:C4), (C22xC12).532C22, C22.8(C6.D4), (C2xC4xC12).15C2, (C2xC4).98(C4xS3), (C2xC6).33(C4:C4), (C2xC12).217(C2xC4), (C2xC4).71(C2xDic3), (C2xC4.Dic3).1C2, (C2xC4).231(C3:D4), (C2xC6).49(C22:C4), SmallGroup(192,82)

Series: Derived Chief Lower central Upper central

C1C12 — C12.8C42
C1C3C6C2xC6C22xC6C22xC12C23.26D6 — C12.8C42
C3C6C12 — C12.8C42
C1C2xC4C22xC4C2xC42

Generators and relations for C12.8C42
 G = < a,b,c | a12=b4=c4=1, bab-1=a-1, ac=ca, cbc-1=a3b >

Subgroups: 232 in 110 conjugacy classes, 51 normal (39 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C6, C8, C2xC4, C2xC4, C23, Dic3, C12, C12, C2xC6, C2xC6, C42, C42, C22:C4, C4:C4, C2xC8, M4(2), C22xC4, C22xC4, C3:C8, C2xDic3, C2xC12, C2xC12, C22xC6, C2xC42, C42:C2, C2xM4(2), C2xC3:C8, C4.Dic3, C4.Dic3, C4xDic3, C4:Dic3, C6.D4, C4xC12, C4xC12, C22xC12, C22xC12, C42:6C4, C2xC4.Dic3, C23.26D6, C2xC4xC12, C12.8C42
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, Q8, Dic3, D6, C42, C22:C4, C4:C4, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2.C42, C4wrC2, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C42:6C4, C42:4S3, C6.C42, C12.8C42

Smallest permutation representation of C12.8C42
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 37 23 25)(2 48 24 36)(3 47 13 35)(4 46 14 34)(5 45 15 33)(6 44 16 32)(7 43 17 31)(8 42 18 30)(9 41 19 29)(10 40 20 28)(11 39 21 27)(12 38 22 26)
(1 17)(2 18)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)(9 13)(10 14)(11 15)(12 16)(25 46 31 40)(26 47 32 41)(27 48 33 42)(28 37 34 43)(29 38 35 44)(30 39 36 45)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,37,23,25)(2,48,24,36)(3,47,13,35)(4,46,14,34)(5,45,15,33)(6,44,16,32)(7,43,17,31)(8,42,18,30)(9,41,19,29)(10,40,20,28)(11,39,21,27)(12,38,22,26), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,13)(10,14)(11,15)(12,16)(25,46,31,40)(26,47,32,41)(27,48,33,42)(28,37,34,43)(29,38,35,44)(30,39,36,45)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,37,23,25)(2,48,24,36)(3,47,13,35)(4,46,14,34)(5,45,15,33)(6,44,16,32)(7,43,17,31)(8,42,18,30)(9,41,19,29)(10,40,20,28)(11,39,21,27)(12,38,22,26), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,13)(10,14)(11,15)(12,16)(25,46,31,40)(26,47,32,41)(27,48,33,42)(28,37,34,43)(29,38,35,44)(30,39,36,45) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,37,23,25),(2,48,24,36),(3,47,13,35),(4,46,14,34),(5,45,15,33),(6,44,16,32),(7,43,17,31),(8,42,18,30),(9,41,19,29),(10,40,20,28),(11,39,21,27),(12,38,22,26)], [(1,17),(2,18),(3,19),(4,20),(5,21),(6,22),(7,23),(8,24),(9,13),(10,14),(11,15),(12,16),(25,46,31,40),(26,47,32,41),(27,48,33,42),(28,37,34,43),(29,38,35,44),(30,39,36,45)]])

60 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E···4N4O4P4Q4R6A···6G8A8B8C8D12A···12X
order122222344444···444446···6888812···12
size111122211112···2121212122···2121212122···2

60 irreducible representations

dim11111112222222222222
type++++++-+-+-+
imageC1C2C2C2C4C4C4S3D4Q8D4Dic3D6Dic6C4xS3D12C3:D4C3:D4C4wrC2C42:4S3
kernelC12.8C42C2xC4.Dic3C23.26D6C2xC4xC12C4.Dic3C4:Dic3C4xC12C2xC42C2xC12C2xC12C22xC6C42C22xC4C2xC4C2xC4C2xC4C2xC4C23C6C2
# reps111144412112124222816

Matrix representation of C12.8C42 in GL3(F73) generated by

100
0240
0070
,
4600
001
010
,
2700
0720
0027
G:=sub<GL(3,GF(73))| [1,0,0,0,24,0,0,0,70],[46,0,0,0,0,1,0,1,0],[27,0,0,0,72,0,0,0,27] >;

C12.8C42 in GAP, Magma, Sage, TeX

C_{12}._8C_4^2
% in TeX

G:=Group("C12.8C4^2");
// GroupNames label

G:=SmallGroup(192,82);
// by ID

G=gap.SmallGroup(192,82);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,253,64,1123,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^4=c^4=1,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^3*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<